Underdosing of antiretrovirals in UK and Irish children with HIV as an example of problems in prescribing medicines to children, 1997-2005: cohort study

Esse N Menson, A Sarah Walker, Mike Sharland, Carole Wells, Gareth Tudor-Williams, F Andrew I Riordan, E G Hermione Lyall, Diana M Gibb and collaborative HIV paediatric study steering committee

BMJ 2006;332:1183-1187
doi:10.1136/bmj.332.7551.1183

Updated information and services can be found at:
http://bmj.com/cgi/content/full/332/7551/1183

These include:

Data supplement
"Table"
http://bmj.com/cgi/content/full/332/7551/1183/DC1

References
This article cites 15 articles, 6 of which can be accessed free at:
http://bmj.com/cgi/content/full/332/7551/1183#BIBL

Rapid responses
You can respond to this article at:
http://bmj.com/cgi/eletter-submit/332/7551/1183

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

- HIV infection/AIDS (1207 articles)
- Pharmacology and toxicology (355 articles)
- Children (1648 articles)
- Other Pediatrics (1776 articles)

Notes

To order reprints of this article go to:
http://www.bmjournals.com/cgi/reprintform

To subscribe to BMJ go to:
http://bmj.bmjjournals.com/subscriptions/subscribe.shtml
Research

Underdosing of antiretrovirals in UK and Irish children with HIV as an example of problems in prescribing medicines to children, 1997-2005: cohort study

Esse N Menson, A Sarah Walker, Mike Sharland, Carole Wells, Gareth Tudor-Williams, F Andrew I Riordan, E G Hermione Lyall, Diana M Gibb, for the collaborative HIV paediatric study steering committee

Abstract

Objective To measure the extent of underdosing of antiretroviral drugs in children.

Design Multicentre cohort study.

Setting Clinical centres in hospitals in the United Kingdom and Ireland in the collaborative HIV paediatric study (CHIPS).

Participants 615 HIV infected children aged 2-12 years receiving antiretrovirals.

Main outcome measures Doses relative to weight and height compared with current recommended doses in 2004 European guidelines.

Results The CHIPS cohort of 934 children comprises 80% of diagnosed HIV infected children in the UK and Ireland between January 1997 and March 2005, of which 66% (615) aged 2-12 years were prescribed antiretrovirals. Actual doses standardised to weight or surface area varied widely across individual drugs, antiretroviral class, and calendar time, with children underdosed (prescribed less than 90% of current recommended doses) from 6-62% child time at risk. Three serious issues in prescribing antiretrovirals, which may also be relevant to paediatric prescribing in general, were identified. Firstly, dosing was inadequate before incorrect recommendations at licensing were later revised when important pharmacokinetic results emerged. Secondly, guidelines stating dosage alternatives (by weight/surface area) for the same drug led to different and inconsistent doses. And, thirdly, ongoing growth was not adjusted for.

Conclusions Largely inadvertently, HIV infected children in the United Kingdom and Ireland have been underdosed with antiretrovirals, highlighting problems applicable throughout paediatric prescribing.

The evidence base for prescribing to children is poor. Most drugs have limited paediatric pharmacokinetic and pharmacodynamic data, partly due to a longstanding culture of resistance to enrolling children in clinical trials and the genuine difficulties of undertaking paediatric pharmacokinetic studies. Without age specific data, adult doses are often extrapolated without appropriate regard for age related differences in drug handling or requirements for effectiveness. Lack of acceptable formulations limits the precision with which doses can be prescribed to children as they grow. Many liquids are unpalatable, and doses for older children can be too large in volume. Postmarketing pharmacovigilance of most drugs licensed for children is limited at best, without legal obligation to monitor drugs prescribed off label (25% of drugs used in paediatric wards). The impact of any deficits in prescribing is unknown.

Legislation from the European Union and the US Food and Drug Administration, as well as proposals from the UK Department of Health aim to tackle such issues and improve paediatric prescribing. Few published studies describe the scale or nature of the obstacles to accurate and effective paediatric prescribing or attempt to identify their causes, yet such studies are essential if interventions are to be appropriately targeted. Antiretroviral prescribing to HIV infected children is a good example of some universal problems.

Methods

The UK and Irish collaborative HIV paediatric study (CHIPS; www.ctu.mrc.ac.uk/studies/chips.asp) collects clinical, laboratory, and drug information from HIV infected children under the care of specialist or general paediatricians in 23 centres in the United Kingdom and Ireland, representing 80% of all known HIV infected children reported to the national study of HIV in pregnancy and childhood.

We analysed each dose of antiretroviral prescribed after January 1997 relative to the most recent height and weight measurement, using the formula surface area = √[(weight (kg) × height (cm) – 3600). We compared the total daily dose with the current recommended dose (CRD; see table A on bmj.com) defined according to 2004 PENTA guidelines, to evaluate prescribing relative to current best practice (rather than audit against information available at the time of prescribing).

We compared the adequacy of dose in three time periods—1997-9, the initial era when effective treatment became available for children; 2000-2, after results of paediatric pharmacokinetic studies and European prescription guidelines were published; and from 2003 to March 2005. We focussed on the duration of underdosing between ages 2 and 12 years inclusive because drug pharmacokinetics differ substantially in infancy and adolescence.

Results

Of 934 children in the CHIPS cohort, 615 (66%) aged 2-12 years were prescribed antiretrovirals (tables 1, 2, and 3). Subsequent analysis excluded 17 children (3%) from five centres that did not...
report any dose changes to CHIPS and data from eight rarely prescribed antiretrovirals. Three main classes of antiretrovirals were prescribed—nucleoside reverse transcriptase inhibitors, which commonly form the backbone of regimens; non-nucleoside reverse transcriptase inhibitors; and protease inhibitors.

Weight (and height) measurements for dose calculations

In total, 8907 weights (median 3.6 (interquartile range 2.7-4.6) per child per year) and 3660 antiretroviral dose changes (1.4 (0.6-2.7) per child per year) were reported from visits to clinic. 2788 (76%) of changes to dose had weight reported on the same date; in 3321 (91%) the most recent weight was within the preceding three months or subsequent six weeks (similarly for height).

Prescribed doses compared with CRD

Doses standardised to weight or surface area varied widely across individual drugs and drug classes in all periods (fig 1). The proportion of time prescribed at less than 90% of the CRD varied between 6% and 62%. Non-nucleoside reverse transcriptase inhibitors and protease inhibitors were underdosed more than nucleoside reverse transcriptase inhibitors, particularly in earlier time periods. Three specific patterns and dosing issues are highlighted below.

Underdosing related to changes in dosing recommendations after licensing

Dosing recommendations of the protease inhibitor nelfinavir were revised after licensing. Before important postlicensing pharmacokinetic data emerged to show that the original licensed

Table 1 Demographics and disease history of the 615 children aged 2-12 years in the collaborative HIV paediatric study (CHIPS) who took antiretrovirals after 1 January 1997

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>289 (47%)</td>
</tr>
<tr>
<td>Known to be vertically HIV-1 infected</td>
<td>584 (95%)</td>
</tr>
<tr>
<td>Ethnic group:</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>445 (72%)</td>
</tr>
<tr>
<td>White</td>
<td>90 (15%)</td>
</tr>
<tr>
<td>Mixed</td>
<td>60 (10%)</td>
</tr>
<tr>
<td>Other/unknown</td>
<td>20 (3%)</td>
</tr>
<tr>
<td>Received antiretrovirals before 1 January 1997</td>
<td>132 (21%)</td>
</tr>
</tbody>
</table>

Table 2 Characteristics at the latest of 1 January 1997 or the start of treatment with antiretrovirals of children aged 2-12 years in the collaborative HIV paediatric study (CHIPS) who took antiretrovirals after 1 January 1997

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No of children</th>
<th>Median (interquartile range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>615</td>
<td>4.8 (2.2-8.1)</td>
</tr>
<tr>
<td>Centers for Disease Control stage*:</td>
<td>615</td>
<td>NA (231, 38%)</td>
</tr>
<tr>
<td>B</td>
<td>14</td>
<td>184 (33%)</td>
</tr>
<tr>
<td>C</td>
<td>38</td>
<td>200 (33%)</td>
</tr>
<tr>
<td>CD4 cell percentage</td>
<td>584</td>
<td>14 (8-22)</td>
</tr>
<tr>
<td>HIV-1 RNA (log10 copies/ml)</td>
<td>516</td>
<td>5.1 (4.4-5.7)</td>
</tr>
</tbody>
</table>

*Two of three most severe categories only are presented.
Dose of antiretrovirals that have alternative dosage strategies (surface area or weight)

Original licensing studies for the non-nucleoside reverse transcriptase inhibitor nevirapine dosed by surface area (300-400 mg/m² a day), but also extrapolated for dose by weight and age (14 mg/kg/day for ages 7 years and younger else 8 mg/kg/day). The two strategies correspond poorly because of the abrupt change in dose at 8 years old, and because the relation between surface area and weight is not linear. For older children, the CRD based on weight is consistently less than the dose based on surface area (fig 2) whereas the reverse is true for younger children when the dose is above 200 mg daily. Doses calculated from surface area that was estimated from weight, using common charts, were closer to doses calculated from actual surface area alone than doses calculated from weight and age. Nevirapine doses related more closely to the CRD calculated by surface area than weight; 63% were within 90-125% of the CRD calculated by surface area compared with 48% by weight (similarly in each age group; fig 3). Over calendar time there was a clear trend of prescribing increasing doses, whether by surface area (48%, 66%, and 68% of doses prescribed were 90-125% of the CRD in 1997-9, 2000-2, and 2003-5 respectively) or by weight; one child received a high dose of nevirapine in error for nine months corresponding to 90-125% current recommended dose based on dosing by weight.

Dose prescribing by weight bands

Efavirenz, the alternative non-nucleoside reverse transcriptase inhibitor for children, was less commonly underdosed than nevirapine, and had more consistent dosing over calendar time (16% and 17% of child time at less than 90% of the CRD by weight in 2000-2 and 2003-5, respectively, using an approximation of 12.5 mg/kg to the complex formula used originally (see table A on bmj.com)). Manufacturer’s guidelines recommend dosage by weight bands (fig 4), producing a tendency toward underdosing as a child’s weight nears the top of each weight band, aggravated by children staying on a lower band despite weight increase.

Discussion

Numerous studies have shown that combination antiretroviral treatment considerably improves prognosis for children infected with HIV-1. Despite this, we found considerable underdosing of antiretrovirals in the UK and Ireland based on current best evidence. Some antiretrovirals were dosed suboptimally because of inadequate pharmacokinetic data at licensing; other underdosing seems attributable to confusing and inconsistent dosage strategies or to failure to respond to growth, especially at the extremes of weight bands.
the remainder. Legitimate dose reductions may have been required after toxicity, but these tend to occur less often than for adults who take antiretrovirals. We have planned further analyses to determine whether underdosing is related to therapeutic response, to evaluate whether the therapeutic index (the ratio of toxic dose to therapeutic dose) of individual drugs affects the extent of misprescribing or effectiveness.

Our study highlights important issues that apply throughout prescribing to children, particularly for other chronic diseases that need long term medication. Drug doses need regular adjustment as children grow, and failure to do so may reduce the benefits of treatment. Child friendly formulations are essential because existing tablet sizes designed for adults limit the precision with which doses can be given to children. Families with young children often prefer small pills (or dispersible, crushable, or scored tablets), rather than unpalatable suspensions with large volumes. HIV has useful surrogate markers of treatment efficacy (CD4 cells or percentage and HIV viral load). In conditions without equivalent markers inadequate dosing may go undetected until failure of treatment is seen clinically. Treatment of other chronic conditions, such as respiratory diseases of childhood, is largely prescribed off label and is also hampered by insufficient data on safety and efficacy in children. Our findings from this current study underline the importance of research on suitable formulations, dosages, and efficacy of drugs for children with acute and chronic diseases—for example, asthma. New dosing information that emerges after licensing may go undetected until failure of treatment is seen clinically.

Inadequate dosing also arises through failure to adjust for weight and surface area. Such unexplained inconsistencies undermine the quality of paediatric prescribing perhaps worsening outcome at the individual and population level. In the absence of clear reasons for variations, simplification and unification of guidelines, with clarity from regulating bodies, would be preferable. Weight bands have certain advantages, particularly the precision with which doses can be given to children. Where clinical and research networks are well established and integrated (for example, PENTA in Europe, www.pentrail.org), poor pharmacokinetic data at licensing results in incorrect dose recommendations. Guidelines stating alternative dosage strategies (by weight or surface area) for the same drug lead to different and inconsistent doses. Inadequate dosing also arises through failure to adjust for ongoing growth.

Fig 4 Dosing based on weight and weight bands for efavirenz. Dotted blue lines show licensed dose bands for capsules or tablets (13-15 kg, 200 mg; 15-20 kg, 250 mg; 20-25 kg, 300 mg; 25-32.5 kg, 350 mg; 32.5-40 kg, 400 mg; more than 40 kg, 600 mg). Capsules available are 50, 100, and 200 mg plus a 600 mg tablet. Efavirenz is also available as a liquid which is not bioequivalent with the capsule but requires higher doses (15 mg/kg). Formulation data were not collected in CHIPS over the study period. One child was taking high doses of efavirenz (>800 mg and >30 mg/kg) to allow for drug interactions.

What is already known on this topic

- Adult doses are often extrapolated to children without taking account of potential differences in drug handling with age or dose requirements for effectiveness.
- Licensing data for paediatric dosing are often sparse, and subsequent studies may result in important changes to recommended doses.

What this study adds

- HIV infected UK and Irish children have been underdosed with antiretrovirals in the past nine years.
- Poor pharmacokinetic data at licensing results in incorrect drug dosing until important pharmacokinetic results emerge after licensing and inform revision of dosage recommendations.
- Guidelines stating alternative dosage strategies (by weight or surface area) for the same drug lead to different and inconsistent doses.
- Inadequate dosing also arises through failure to adjust for ongoing growth.

Early dissemination of important new research findings can prompt prompt inform practice.

Drug manufacturers and expert guidelines use a variety of ways to calculate doses of paediatric drugs. For example, even the recently launched **BNF for Children** gives amoxycillin dosing for pneumonia by age bands and for otitis media by weight. Phenoxymethylpenicillin and flucloxacillin are dosed by age bands, but the age bands differ markedly. Aciclovir is dosed both by weight and surface area. Such unexplained inconsistencies undermine the quality of paediatric prescribing perhaps worsening outcome at the individual and population level. In the absence of clear reasons for variations, simplification and unification of guidelines, with clarity from regulating bodies, would be preferable. Weight bands have certain advantages, particularly avoidance of calculation errors.

Three key points emerge. Firstly, rigorous pharmacokinetic and pharmacodynamic data for children are needed before drug licensure. Secondly, effective formal systems for early appraisal, dissemination, and implementation of important modifications to treatment recommendations are needed universally. Thirdly, improved methods of pharmacovigilance are needed to monitor drug utilisation, efficacy and toxicity after drug licensing. The **European Union** and the United States have recently committed to promoting research specific to children’s medicines while protecting children as participants in clinical trials. The UK Department of Health has launched the Medicines for Children Research Network (www.dic.ac.uk/mcrn), which aims to develop closer links between the drugs industry, regulators, families, and paediatricians, links that will be needed to meet the challenges of developing and manufacturing appropriate paediatric drugs (www.hivforum.org). Our study shows that, even for paediatric HIV—a new disease with rapid drug development and good dialogue between all these parties—antiretroviral dosing seems to have similar problems to the ones that antibiotics have always
had. The Medicines for Children Research Network initiative to tackle these issues is timely.

Acknowledgments: The Collaborative HIV Paediatric Study (CHIPS) is a collaboration between the Medical Research Council Clinical Trials Unit, UK, and the National Study of HIV in Pregnancy and Childhood (NSHPC) at the Institute of Child Health, London. Committees and participants are on bmj.com.

Contributors: All authors contributed to the writing up of the study. In addition, ENM, ASW, MS, and DMG contributed to the design; ENM and CW collected and collated data; and ASW carried out the analysis. All involvement was on behalf of the collaborative HIV paediatric study steering committee. DMG is guarantor.

Funding: CHIPS is funded by the London HIV Consortium and in the past has received additional support from Bristol-Myers Squibb, Boehringer Ingelheim, GlaxoSmithKline, Roche, Abbott, and Gilead. Funding: CHIPS is funded by the London HIV Consortium and in the past has received additional support from Bristol-Myers Squibb, Boehringer Ingelheim, GlaxoSmithKline, Roche, Abbott, and Gilead. The Medicines for Children Research Network initiative to tackle these issues is timely.

Competing interests: None declared.

Ingelheim, GlaxoSmithKline, Roche, Abbott, and Gilead has received additional support from Bristol-Myers Squibb, Boehringer Ingelheim, GlaxoSmithKline, Roche, Abbott, and Gilead. The Medicines for Children Research Network initiative to tackle these issues is timely.

Ethical approval: UK multicentre research ethics committee and relevant local research ethic committees.

(Accepted 6 March 2006)

bmj.com 2006;332:1183

MRC Clinical Trials Unit, London NW1 2DA
Esse Heneghan, consultant registrar in paediatric infectious diseases
A Sarah Walker, specialist registrar in paediatric infectious diseases
B Macrae, senior statistician
Diana M Gibb

professor of epidemiology
St George's Hospital NHS Trust, London SW17 0QT

Mike Sharland, consultant in paediatric infectious diseases
Carole Wells, consultant in paediatric infectious diseases
Sarah Walker, senior statistician

St Mary's Hospital NHS Trust, London W2 1NY

Gareth Tudor-Williams, consultant in paediatric infectious diseases