Short-term risk of disease progression in HIV-1 infected children receiving no antiretroviral therapy or zidovudine monotherapy: estimates according to CD4 percent, viral load, and age

HIV Paediatric Prognostic Markers Collaborative Study Group

Address for correspondence and reprints:
Dr David Dunn, MRC Clinical Trials Unit, 222 Euston Road, London NW1 2DA.
Email: d.dunn@ctu.mrc.ac.uk  Tel: 0207 670 4739  Fax: 0207 670 4815
See appendix for details of committees and centres

Abstract: 252 words
Text: 3239 words
Tables: 4
Figures: 2

Funding: This study received no specific funding
Summary

Objective: To estimate the 12-month risks of progression to AIDS and death according to age and most recent CD4 percent or HIV-1 RNA viral load measurement in HIV-1 infected children receiving no antiretroviral therapy (ART) or zidovudine monotherapy only.

Methods: Individual, longitudinal data were pooled on 3941 children who participated in eight cohort studies and nine randomised trials of antiretroviral or immune therapies in Europe and the US. Estimates of risk were derived from parametric survival models.

Findings: 997 AIDS-defining events were observed over 7297 child-years of follow-up in the analysis of CD4 percent, and 284 events over 2282 child-years in the analysis of viral load; the corresponding numbers of deaths were 568 (9087 child-years) and 129 (2816 child-years). Over two years of age, the risk of death increases sharply when CD4 is less than around 10%, or 15% for AIDS, with a low and relatively stable risk at higher CD4 percent values. At the same CD4 percent, children under two years have a worse prognosis than older children. The risk of clinical progression increases when viral load exceeds about $10^5$ copies/mL; at lower values, only older children show variation in risk. Both markers have independent predictive value for disease progression, although CD4 percent is the stronger predictor.

Interpretation: This meta-analysis provides accurate estimates of the short-term risk of AIDS and death in children in the absence of effective ART. This information is important for clinicians making decisions about starting or re-starting ART in children, and in designing clinical trials related to the decisions.
**Introduction**

Early cohort studies reported that 20-25% of HIV-1 infected children progressed rapidly to AIDS or died during infancy, with slower disease progression thereafter.\(^1,2\) The introduction of combination antiretroviral therapy (ART) has resulted in major reductions in morbidity and mortality,\(^3-6\) but there are no trials in either children or adults addressing the question of when it should be started. In the absence of data, guidelines for starting and switching ART have taken account of the CD4 cell count/percent and HIV-1 RNA viral load as predictors of progression to symptomatic disease.\(^7-9\) Although there are considerable data from adult studies on the prognostic value of these markers,\(^10-12\) special factors in children include a developing immune system, a much slower attainment of a virological “set point”,\(^13,14\) clinical use of CD4 cell percent rather than CD4 cell count,\(^7\) and the need to take age into account.\(^15,16\) A number of studies in paediatric populations have been reported,\(^15-18\) with risk estimates relating to a 2-7 year time horizon. However, because CD4 and viral load are regularly monitored (typically every three months), short-term risk estimates are arguably clinically more relevant.\(^12\) Here, based on individual patient data on nearly 4000 HIV-1-infected children participating in cohort studies and randomised trials in Europe and the US who received no ART or zidovudine monotherapy, we have estimated the 12-month risks of progression to AIDS and death in terms of age and the most recent CD4 percent or viral load measurement.
Methods

The HIV Paediatric Prognostic Markers Collaborative Study (HPPMCS) is a collaboration between investigators of European and US cohort studies and randomised trials of ART or immune therapies in perinatally HIV-1 infected children.\textsuperscript{1,6,19-34} Participating investigators provided individual patient data, which were subsequently pooled, on a number of specified variables, including demographic characteristics, date of diagnosis of HIV infection (if known), date of death or last known to be alive, date of last clinical assessment, whether ever diagnosed with AIDS with the exception of lymphoid interstitial pneumonia (equivalent to Clinical Category C)\textsuperscript{35} and, if so, date of first diagnosis and indicator disease(s), date started zidovudine, date of start of any other antiretroviral drug, CD4 and CD8 lymphocyte counts and percentages, and viral load measurements and assay method (if available). Records that matched on key demographic variables were linked to avoid duplication. This analysis is limited to measurements before the start of ART or during receipt of zidovudine monotherapy, which has at most a marginal clinical effect.\textsuperscript{32} Thus, in the randomised trials of ARTs, children allocated to combination ART or non-zidovudine monotherapy were excluded.

Separate analyses were performed to determine the 12-month predictive value of CD4 percent and viral load for (a) death (all cause mortality) and (b) progression to first AIDS event or death in the absence of AIDS. Follow-up was counted from the date of first CD4 or viral load measurement except when the study inclusion criteria would have introduced bias. For example, in death analyses, follow-up of children enrolled in randomised trials was counted from the first measurement at or after randomisation since being alive at randomisation was clearly a prerequisite to trial entry. To minimise presentation bias (i.e., children whose HIV infection only came to light when they became severely symptomatic) in the non-birth cohort studies, children were excluded if they experienced an event within one month of diagnosis of HIV infection.
Follow-up was censored, even if an endpoint was observed subsequently, at the earliest of the following: (i) date of last clinical visit (for analyses of the AIDS endpoint) or date last known alive (for analyses of the death endpoint); (ii) 12 months after the last CD4 or viral load measurement; (iii) 6 months after starting any antiretroviral drug other than zidovudine monotherapy. The rationale for the 6 month extension in (iii) was to reduce any bias resulting from selective use of combination ART or other monotherapy in children with a poor prognosis. However, the estimated risk of disease progression was only slightly lower when the analysis was repeated without this restriction. For some children in the PACTG trials, ART information was not available after the date of discontinuation of the allocated trial treatment, in which case follow-up was censored 6 months after this date or at 01/10/1991 (month when didanosine was approved by the FDA), whichever occurred later.

Viral load was measured by Nucleic Acid Sequence-based Amplification Assay [NASBA] (30% of measurements), Roche Amplicor Monitor 1.0 (17%), Chiron bDNA 3.0 (8%), Roche Amplicor Monitor 1.5 (6%), Chiron bDNA 2.0 (2%), other (3%); for the remaining 34%, the type of assay was not recorded. Although the assays give systematically different estimates of viral load concentration, the difference between the two most commonly used assays (NASBA and Roche Amplicor Monitor 1.0) is minor compared with biological variation. Viral load values below the assay-specific lower limit of detection (7% of all measurements) were set equal to this limit; values above the linear dynamic range were uncommon due to the practice of titrating out high concentration samples.

**Statistical methods**

The 12-month risk of disease progression was estimated by a previously described “person-intervals” method with some modifications. In brief, each CD4 or viral load measurement contributed a unit of observation to a survival analysis, with time projected up to a maximum of 12 months; i.e., the time scale was re-set to zero at each new measurement, and age at each measurement and CD4 percent or viral load defined the “baseline” covariates.
Parametric survival models were used to derive 12-month survival estimates (details in Appendix). Confidence intervals were derived from 1000 non-parametric bootstrap samples (resampling individual children rather than visits) using the bias-corrected percentile method.$^{39}$ Because of difficulty in extending this model to include multiple covariates, we investigated the effect of study, calendar period, and demographic variables on risk estimates indirectly through Cox proportional hazard models, on an age time scale.

As the publication in 1995 of US guidelines that recommended wider use of co-trimoxazole prophylaxis is likely to have influenced the incidence of *Pneumocystis carinii* pneumonia (PCP) and some bacterial infections,$^{40}$ the risk of progression to AIDS could have been over-estimated in the context of current clinical practice as a lot of the data were collected before 1995. This was investigated through multiple imputation: (1) Identify each AIDS diagnosis due to PCP before 1/1/1995 with age <1 year or any prior CD4 <15%. (2) Using a random number generator, censor at the date of PCP diagnosis with probability 0.8, otherwise leave the data unchanged, i.e., assumes a co-trimoxazole prophylaxis policy results in a 80% reduction in the risk of PCP.$^{41}$ (3) Repeat steps 1-2 for AIDS diagnoses due to serious bacterial infections, except censor with probability 0.2, i.e., 20% risk reduction (4) Fit model to imputed dataset (5) Repeat steps 1-4 ten times and average the parameter estimates over the ten imputed data sets.
Results

Data from 17 studies conducted in Europe or the USA between 1983 and 2002 are included in the analysis (Table 1). In the analysis of the predictive value of CD4 percent, 997 children progressed to AIDS (n=898) or died without an AIDS diagnosis (n=99), compared with 284 children in the analysis of viral load (Table 2); the corresponding numbers of deaths were 568 and 129. Opportunistic infections were the most common AIDS diagnoses (37%), followed by serious recurrent bacterial infections (30%) and HIV encephalopathy (20%). The relative frequency of these conditions was strongly age-related, PCP and encephalopathy becoming proportionately less common, and serious recurrent bacterial infections proportionately more common, with increasing age.

Follow-up and number of events by age and CD4 percent or viral load is shown in Figure 1. The distributions of both markers shift to lower values with increasing age, reflecting selection effects as well as evolution of the markers within individuals. Notably few deaths were observed among older children with CD4 above 10% despite extensive follow-up, although less than 1% of the total follow-up is in children over 12 years. Slightly less than half of the follow-up was observed during 1992-95; earlier years were under-represented in the viral load analyses, reflecting the later availability of testing (Table 2). Zidovudine monotherapy was received during 34-47% of the follow-up. The median number of CD4 measurements per child was 6 (inter-quartile range [IQR] 3-10); the distribution of the interval between successive tests was <3 months (58%), 3-6 months (26%), 6-12 months (10%), >12 months (6%). Viral load data were less extensive (median 3 measurements per child, IQR 2-6), although the interval between tests was similar.

Risk of disease progression

The estimated probabilities of AIDS and death within 12 months according to current CD4 percent or viral load at selected ages are shown in Figure 2 and Table 3. At very low values of CD4 percent, prognosis is poor at all ages. At higher values, the risk of progression to
AIDS for a given value of CD4 percent is substantially higher in younger children, approximately 8-fold higher in a one year old child and 2-fold higher in a five year old, compared with a ten year old child. Above the age of two years, 12-month risk increases sharply when CD4 falls below about 10% for death, or about 15% for AIDS, with a low and relatively stable risk at higher CD4 percent values. In infants, however, disease progression rates are substantial even at high values of CD4 percent: at age 6 months, a CD4 value in the range 25%-50% predicts a risk of AIDS within 12 months between 23% and 14% and a risk of death between 7.9% and 4.1%. The risk of disease progression increases sharply, irrespective of age, at viral load values above $10^5$ copies/mL; at lower concentrations, viral load gives better discrimination in risk in older children than in younger children. As an independent predictor of disease progression, age was less important than in the analysis of CD4 percent, particularly for death. Additional analyses indicated that adjustment for study or calendar period did not significantly affect the shape of the curves in Figure 2 (results not shown).

A series of analyses was performed on the comparative and joint predictive value of CD4 percent and viral load, based on the 5770 visits when both variables were measured. First, considering the markers separately, CD4 percent gave a better statistical “fit” to the observed data (by 46.8 log-likelihood units, with the same number of parameters), showing it to be the stronger individual predictor. Thus, at age 2 years the estimated risk of AIDS varies from 2.6% at the 95th age-specific centile for CD4 percent (25.5%) to 40% at the 5th centile for CD4 percent (4.2%), whereas the risk variation for viral load is narrower, 4.9% at the 5th centile ($4.9 \log_{10}$ copies/ml) to 23% at the 95th centile ($6.2 \log_{10}$ copies/ml). Second, there was evidence that the two markers have independent predictive value: they were only weakly associated (correlation coefficients ranged between -0.33 and -0.18 within the age groups in Figure 1), and a gradient in risk across CD4 percent quartiles persisted after adjusting for viral load and age, as did a gradient across viral load quartiles after adjusting for CD4 percent and age (results not shown).
Modelling the effect of the retrospective application of guidelines on co-trimoxazole prophylaxis made little difference to the findings. For example, for a 6-month old child with 30% CD4 T-cells, the estimated risk of AIDS within 12 months was reduced from 20% to 18%. The corresponding reductions for CD4 values of 20% and 10% were from 29% to 27% and 49% to 46%, respectively. For older children, in whom PCP is less common, the reductions were even smaller. These findings were relatively insensitive to different assumptions about the efficacy of co-trimoxazole prophylaxis in preventing PCP and serious bacterial infections (results not shown).

Factors influencing risk of disease progression

Cox proportional hazards models controlling for CD4 percent as a time-varying covariate showed significant variation between the studies in terms of disease progression (Table 4), although there was no clear pattern by study type. Children who received intravenous immunoglobulin in the NICHD IVIG trial experienced a lower incidence of bacterial infections\textsuperscript{26} and thus of AIDS compared with the placebo group, although mortality rates were similar. The study-specific hazard ratios for AIDS and for death were not strongly concordant across studies, e.g., in the Italian Register for HIV Infection in Children, the incidence of AIDS was slightly lower than the combined birth cohorts (hazard ratio 0.94), whereas mortality incidence was significantly higher (hazard ratio 1.46). AIDS incidence fell substantially over calendar time – an 11% decrease in 1992-95 compared with 1983-1991 and a further 39% decrease in 1996-2002. Similar reductions, 22% and 50% respectively, were observed for mortality. Neither gender nor ethnicity were associated with disease progression after adjustment for CD4 percent.
Discussion

In developed countries, CD4 percentage and viral load are routinely measured in HIV-1 infected children to monitor clinical progression and to inform decisions on clinical management. The ability to use this information effectively has been limited by incomplete characterisation of these laboratory markers, particularly the quantification of the short-term risk of clinical progression for given levels of the markers. In this longitudinal study of nearly 4000 HIV-1 infected children we have derived estimates of the risk of AIDS and death which are applicable up to at least 10 years of age.

Several previous related studies have been reported, which although carefully analysed, have a number of limitations.\textsuperscript{15-18} First, as some of the subjects had received combination ART, the results may not have reflected the “natural” association between the laboratory markers and disease progression,\textsuperscript{10} which is most relevant to the question of when to initiate ART. Our analysis, in contrast, is essentially based on follow-up while children received no ART or zidovudine monotherapy only, which has only a minor, short-term effect on disease progression and laboratory markers.\textsuperscript{32} Second, the risk estimates presented in previous studies related either to “instantaneous” time (the inference from Cox proportional hazards models) or to comparatively long periods of up to seven years. However, because CD4 percent and viral load are regularly re-measured (typically every three months), we present shorter-term projections (12 months) which are arguably more relevant in clinical decision-making regarding initiation of therapy. Third, we used mathematically flexible models with CD4 percent, viral load, and age as continuous variables, which give more accurate individual predictions.

These analyses revealed highly non-linear associations, which were modified by age, between the risk of disease progression and both CD4 percent and viral load. This mirrors findings in HIV-1 infected adults, in whom the short-term risk of developing AIDS is substantially higher at CD4 levels below approximately 200 cells/mm\textsuperscript{3} (corresponding to a
median CD4 percent of approximately 14%).\textsuperscript{10-12} Our data clearly show that older children (with longer time from seroconversion) have a lower short-term risk of clinical progression than younger children, for a given value of CD4 percent. In contrast, an adult seroconverter cohort found that the risk of AIDS increased with time from seroconversion for a given CD4 count.\textsuperscript{43} When interpreting the prognostic significance of a viral load measurement, age is less critical than for CD4, presumably because the intrinsic effect of age is partly offset by the effect of the decline in viral load with age in the absence of ART in children.\textsuperscript{13-14} However, the accuracy of our model in the first year of life, during the dynamic changes in viral load that occur after primary infection, is uncertain.

It is anticipated that most clinicians will focus on the risk estimates for AIDS rather than those for death. However, it is notable that mortality estimates were only one-quarter to one-third of those for AIDS, indicating that most of the AIDS-defining illnesses were not immediately fatal, even in the absence of ART. In line with previous studies, we found that CD4 percent and viral load have independent predictive value.\textsuperscript{15,16,18} Of the two markers, CD4 percent was the stronger individual predictor, an important result for settings where viral load testing may not be available. To obtain more accurate estimates of the risk of disease progression we are developing models that incorporate both CD4 percent and viral load, and examining whether changes in the values of the markers over time provide additional information.

**Generalisability**

The broad study selection criteria used, with the aim of maximising information, raises questions about the applicability of our results for individual children. There was no evidence of an effect of gender or ethnicity on disease progression, despite reports that average viral load levels may be lower in girls than in boys.\textsuperscript{21} However, we did observe significant differences between studies and improvements in prognosis over calendar time. Some of the differences between studies can be explained by selection effects – for example, some of the clinical trials included only asymptomatic children. However, as neither the type of study nor
the differences in CD4 percent between studies fully explained the heterogeneity, presentation of overall risk estimates is most appropriate. Further, in practice, clinicians provide care for children presenting in a variety of ways.

The rates of both morbidity and mortality declined over calendar time, particularly after 1996 coincident with the widespread use of dual then triple ART. If, as is likely, such therapy was used selectively in children at higher risk of AIDS or death, then estimates of disease progression would be biased downwards. We extended follow-up by 6 months to reduce this bias, but as a residual effect could not be excluded we rejected the idea of “adjusting” the risk estimates for calendar time. On the other hand, our overall estimates of disease progression rates based on data from 1983 are likely to be higher than those experienced currently by untreated children. Adjustment for PCP prophylaxis had a small effect, possibly because PCP accounted for only 28% of AIDS diagnoses in infancy.

Clinical implications
Future revisions of paediatric guidelines on when to start ART may be influenced by these results. In particular, it may be appropriate to increase the number of age categories and to lower CD4 thresholds for older children. For children under one year of age, US guidelines advocate treatment for all children, whereas in Europe “consideration” of treatment is recommended. The observation that neither CD4 percent nor viral load could identify young children at low risk of disease progression lends some support to a universal treatment policy for infants, or at least to the need for close observation to promptly detect pre-AIDS clinical signs or symptoms.

In US and Europe, the availability of interventions to reduce mother-to-child HIV-1 transmission has led to a dramatic reduction in the number of HIV-1 infected children who are identified early in life. However, in many European countries an increasing proportion of infected children are presenting at older ages (many having acquired HIV infection in high-
prevalence countries), after the initial high risk age for clinical progression. It is for the management of these children that the results of this study may be of most relevance. In addition, this analysis could inform when to re-introduce treatment following periods of interruption, a therapeutic approach attracting increasing interest due to concerns about the long-term side effects of ART. Finally, in resource limited settings, the deferred use of ART, even in very young children, may be the only practicable strategy, partly due to the non-availability of tests for the early diagnosis of HIV infection.\textsuperscript{9} The applicability of our findings to such settings, where the natural history of infection may be different, requires confirmation.
Appendix 1

Steering Committee
AG Babiker, M Bulterys, DT Dunn, T Duong, C Giaquinto, DM Gibb, L Gray, DR Harris,
M Hughes, M de Martino, R McKinney, L Mofenson, J Moyle, ML Newell, S Pahwa,
P Palumbo, C Rudin, M Schluchter, M Sharland, W Shearer, B Thompson, P Tookey, PA Tovo

1. MRC Clinical Trials Unit, UK (Coordinating Centre)  2. Division of HIV/AIDS Prevention,
Centers for Disease Control and Prevention, Atlanta, GA  3. Department of Pediatrics,
University of Padova, Italy  4. Institute of Child Health, University College London  5.
Westat, Rockville, MD  6. Harvard School of Public Health, Boston, MA  7. Department of
Pediatrics, University of Florence, Italy  8. Duke University Medical Center, Durham, NC  9.
National Institute of Child Health and Human Development, National Institutes of Health,
Rockville, MD  10. North Shore-LIJ Research Institute, Manhasset, NY  11. UMDNJ Medical
School, Newark, New Jersey  12. Universitäts-Kinderklinik, Basel, Switzerland  13. Case
Western Reserve University, Cleveland, OH  14. St George’s Hospital Medical School,
London  15. Baylor College of Medicine, Houston, TX  16. C-TASC, Baltimore, MD  17.
Department of Pediatrics, University of Turin, Italy

Studies represented by Steering Committee members
Collaborative HIV Paediatric Study (CHIPS) of UK and Ireland (DM Gibb, P Tookey, M
Sharland), European Collaborative Study (ML Newell, L Gray), Italian Register for HIV
Infection in Children (M de Martino, PA Tovo), National Institute of Child Health and Human
Development [NICHD] Intravenous Immunoglobulin Study Group (DR Harris, L Mofenson),
Pediatric AIDS Clinical Trials Group [PACTG] (M Hughes, R McKinney, S Pahwa), Pediatric
Pulmonary and Cardiovascular Complications of HIV Infection Study (M Schluchter, W
Shearer), Paediatric European Network for Treatment of AIDS [PENTA] (C Giaquinto, DM
Gibb), Perinatal AIDS Collaborative Transmission Study (M Bulterys, P Palumbo), Swiss Mother and Child HIV Cohort Study (C Rudin), Women and Infants Transmission Study (B Thompson, J Moye).

**Contributors**

D Gibb, M Hughes, D Dunn and T Duong formulated the collaboration. TD assembled the data and conducted the statistical analyses under the supervision of DD and DG. DD, DG, and TD drafted the paper. The other members of the Steering Committee coordinated the data extraction for their respective studies, made critical suggestions on several revisions of the analysis, and through their comments improved the clarity of the paper considerably.

**Acknowledgements**

We would like to thank the following for their help in data extraction: Jeffrey Wiener (CDC, Atlanta) for PACTS; Clara Gabiano (Department of Pediatrics, University of Turin) and Luisa Galli (Department of Pediatrics, University of Florence) for the Italian Register for HIV Infection in Children; Laura Farrelly (MRC Clinical Trials Unit, UK) for CHIPS.
Appendix 2. Clinical centres/collaborators

CHIPS
Our Lady’s Hospital for Sick Children, Dublin (K Butler, E Hayes, R Griffin); City Hospital, Edinburgh (J Mok); Edinburgh Royal Hospital for Sick Children (J Mok); Ninewells Hospital, Dundee (J Petrie); St Mary’s Hospital, London (J Evans, G Tudor-Williams, J White, S Head); Great Ormond St Hospital for Children NHS Trust, London (D Gibb, V Novelli, B Ohene-Kena, M Clapson); St George’s Hospital, London (M Sharland, S Donaghy); Ealing Hospital, London (K Sloper); Heartlands Hospital, Birmingham (S Rose, A Riordan); The Children’s Hospital, Sheffield (A Finn, F Shackley, J Hobbs); John Radcliffe Hospital, Oxford (C Richards, P Heath, S Segal); St Thomas; Hospital, London (G du Mont R Cross); King’s College Hospital, London (C Ball, D Graham, A Waters); Chelsea and Westminster Hospital, London (H Lyall, P Seery); Newham General Hospital, London (E Cooper, S Wong, T Fisher); Royal Free Hospital, London (V Van Someren, S McKenna); Lewisham Hospital, London (J Stroobant); Royal Hospital for Children, Bristol (A Foot).

ECS
Giaquinto, O Rampon, V Giacomet, A de Rossi (Università degli Studi di Padova, Italy); G Grosch-Wömer (Charite Virchow-Klinikum, Berlin, Germany); J Mok (Royal Hospital for Sick Children, Edinburgh); I Bates, I de José, F Hawkins, R Garcia-Rodriguez, C Ladrón de Guevara, J M Peña, J Gonzalez Garcia, J Arribas Lopez (Hospital Infantil La Paz, Madrid); F Asensi-Botet, M Otero, D Pérez-Tamarit, A Ortí, M J San Miguel, R de la Torre (Hospital La Fe, Valencia, Spain); H Scherpber, M Kreyenbroek, K Boer (Academisch Medisch Centrum, Amsterdam, The Netherlands); AB Bohlin, E Belfrage, L Navér, (Huddinge and Karolinska University Hospitals, Sweden); J Levy, M Hainaut, A Peitier, S Wilbaut, P Barlow (Hospital St Pierre, Brussels, Belgium); A Ferrazin, D Bassetti, (Department of Infectious Diseases, University of Genoa, Italy); A de Maria (Department of Internal Medicine, University of Genoa, Italy); C Gatta (Department of Obstetrics and Gynecology–Neonatology Unit, University of Genoa, Italy); A Mür, A Paylà, M Viofolas, MA López-Vilchez, M Rovira, R Carreras, E Esteban Tores, S Herrero Perez (Hospital del Mar, Universidad Autonoma, Barcelona, Spain); and N H Valerius (Hvidovre Hospital, Denmark).

The European Collaborative Study is a concerted action of the European Commission (Biomed II PL 97 2005 and QLRT-1999-30002). The Medical Research Council (UK) provides support to the coordinating centre.

Italian Register for HIV Infection in Children

**NICHD intravenous Immunoglobulin Study Group**
Lincoln Hospital Center, Bronx, NY: Kiran Shah MD and Jean Chow MD. Cornell Medical Center, New York City, NY: Paul Edelson MD and Deborah Sanders MD. Schneider Children's Hospital, Queens, NY: Vincent Bonagura MD and David Valacer MD. Beth Israel Medical Center, New York City, NY: Walter Hensley MD. Metropolitan Medical Center, New York City, NY: Mahrufuq Banimj MD. New York Medical College, Valhalla, NY: Asha Gupta MD and Karl I. Li MD. Harlem Hospital Center, New York City, NY: Elaine J. Abrams MD. State University of New York Health Science Center, Brooklyn, NY: Seniik Fikrig MD. Saint Luke's/Roosevelt Hospital Center, New York City, NY: Saroj S. Bakshi MD. North Shore University Hospital, Manhasset, NY: Savita Pahwa MD. New York University Medical Center-Bellevue Hospital, New York City, NY: Keith Krause MD. Columbia Babies Hospital, New York City, NY: Jane Het MD. Albert Einstein College of Medicine, Bronx, NY: Larry Bernstein MD and Ayre Rubinstein MD. University of Connecticut Health Center, Hartford, CT: George Johnson MD. Boston City Hospital, Boston, MA: Ellen R. Cooper MD. University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ: Lawrence Frenkel MD. Saint Christopher's Hospital for Children, Philadelphia, PA: Harold W. Lischner MD and Stephen A. Raphael MD. University of Maryland, Baltimore, MD: John P. Johnson MD. Children's Hospital National Medical Center, Washington DC: Tamara Rakusan MD. Emory University School of Medicine, Atlanta, GA: Steven Nesheim MD, Andre Nahmias MD, and Harry Keyserling MD. The Children's Memorial Hospital, Chicago, IL: Ram Yogev MD and Ellen Chadwick MD. University of Illinois Chicago College of Medicine, Chicago, IL: Kenneth Rich MD. Texas Children's Hospital, Houston, TX: Celine Hanson MD and William. Shearer MD PhD. Children's Hospital Medical Center, Oakland, CA: Ann Petru MD. University of Puerto Rico, San Juan, Puerto Rico: Clemente Diaz MD and Luis Colon Santini MD. San Juan City Hospital, San Juan, Puerto Rico: Eleanore Jimenez MD. University of Maryland at Balimore County University Hospital, Bayamon, Puerto Rico: David Garcia-Trias MD and Carmen Acantilado MD.

**PACTS group**
Bronx Lebanon Hospital: Saroj Bakshi, Muriel Purswani, Emma Stuart; Centers for Disease Control and Prevention: Marc Bulterys, April Bell, Mary Glenn Fowler, Darcy Freedman, Linda Koenig, RJ Simonds, Jeffrey Wiener; Emory University School of Medicine: Steve Nesheim, Andre Nahmias, Mary Sawyer, Michael Lindsey; Harlem Hospital Center: Susan Champion, Julia Floyd, Cynthia Freehand, Pamela Prince; Jacobi Hospital Center: Jacobo Abadi, Joanna Dobroszycki, Adell Harris, Genevieve Lambert; Metropolitan Hospital Center: Mahrufuq Banimj, Lynn Johnson; Medical and Health Research Association of New York City, Inc: Rosalind Carter, Tina Alford, Mary Ann Chiasson, Donald Thea, Jeremy Weendon; Montefiore Medical Center: Marguerite Meyers, Marcella Naccarato, Valerie Nedwin, Ellie Schoenbaum; University of Medicine and Dentistry of New Jersey: Paul Palumbo, Arlene Bardeguez, Linda Bettica, Thomas Denny, James Oleske. University of Maryland School of Medicine: Peter Vink, Lindsey Alger, John Farley, Prasanna Nair, Susan Hines.

**PACTG**
Agence Nationale de Recherche sur le SIDA Protocol 024 Study Group, Paris: Blanche S, Mandelbrot L, Rouzioux C; Albert Einstein College of Medicine, New York: Bernstein LJ, Landor M, Rubinstein A, Shilozberg J, Youchah J. Baltimore Pediatric ACGT: Flatt L, Livingston R, Vink P; Baylor University, Houston: Doyle M, Hanson CG, Kline MW, Laffin J, Shearer WT; Baystate Medical Center Springfield, Mass: Stechenberg BW, Sullivan JL; Bellevue Hospital Center/NYU, New York: Allen M, Borkowsky W, Chandwani S, Deygo N, Kaul A, Lawrence R, Mintor M, Rigaud M, Zuckerman C; Beth Israel Hospital, Boston: McIntosh K, Sachs B, Tuomala R; Boston City Hospital, Boston: Cooper ER, Damon B, Donegan P, Pelton SL, Regan AM; Bronx Lebanon Hospital Center, New York: Barnett T, Biernick W, Cihak P, Dobroszycki J, Nozyce M, Solomon L, Steiner A, Wiznia A, Young B; Case Western Reserve University Cleveland: Chance M, Zucker M, Tolitzis P; Children's Hospital and Medical Center, Seattle: Burchett SK, Carpenter J; McLellan C, Watts DH; Children's Hospital at Albany Medical Center, Albany NY: Lepow M, Samelson R, Wade N; Children's Hospital Oakland: Petru A; Children's Hospital of Boston: Al-Attar I, Burchett SK, Jacobs D, Karthas N, Knox-Burke K, Rubin-Hale A; Children's Hospital of Boston, Brigham and Women's Hospital: McIntosh K, Ruoama R, Sachs B; Children's Hospital of Michigan, Wayne State University, Detroit: Cromer C, Harrison DD, Jones TB, Moore E; Children's Hospital of New Jersey: Connor EM, McSherry G, Oleske J; Children's Hospital of New Jersey / St Joseph's Hospital and Medical Center: Hutcheon N; Children's Hospital of New Jersey/ University of Medicine and Dentistry of New Jersey: Colabelli NB; Children's Hospital of Philadelphia: Manigia C, Rudy B, Rutseterin R, Schaible D; Children's Hospital of Philadelphia, Jefferson Medical College Philadelphia: Anday E, Friank I.
WITS
Principal investigators, study coordinators, program officers and funding include: Clemente Diaz, Edna Pacheco-Acosta (University of Puerto Rico, San Juan, PR; U01 AI 34858); Ruth Tuomala, Ellen Cooper, Donna Mesthene (Boston/Worcester Site, Boston, MA; 9U01 DA 15054); Jane Pitt, Alice Higgins (Columbia Presbyterian Hospital, New York, NY; U01 DA 15053); Sheldon Landesman, Edward Handelsman, Gail Moroso (State University of New York, Brooklyn, NY; U01 HD 36117); Kenneth Rich, Delmyra Turpin (University of Illinois at Chicago, Chicago, IL; U01 AI 34841); William Shearer, Susan Pacheco, Norma Cooper (Baylor College of Medicine, Houston, TX; U01 HD 41983); Joana Rosario (National Institute of Allergy and Infectious Diseases, Bethesda, MD); Robert Nugent, (National Institute of Child Health and Human Development, Bethesda, MD); Vincent Smeriglio, Katherine Davenny (National Institute on Drug Abuse, Bethesda, MD); and Bruce Thompson, Yvonne Matthews (Clinical Trials & Surveys Corp., Baltimore, MD, N01 AI 85339). Scientific Leadership Core: Kenneth Rich (PI), Delmyra Turpin (Study Coordinator) (1 U01 AI 50274-01). Additional support has been provided by local Clinical Research Centers as follows: Baylor College of Medicine, Houston, TX; NIH GCRC RR00188; Columbia University, New York, NY; NIH GCRC RR00645.
Appendix 3. Statistical analysis and calculation of disease progression probabilities

The hazard rate of disease progression, $\lambda$, was expressed as $\lambda = a + b \cdot \exp(-k \cdot x)$ where $x$=CD4 percent or 7- $\log_{10}$(viral load). The parameters $a$, $b$, and $k$ were allowed to depend on age: $\log_e(a) = a_1 + a_2 \cdot \text{age}$, $\log_e(b) = b_1 + b_2 \cdot \text{age}$, $\log_e(k) = k_1 + k_2 \cdot \text{age}$. Models were estimated using the `ml` command in Stata 7.0.\textsuperscript{44} Goodness of fit, as assessed by log-likelihood, was improved by applying the following transformations: $\log_e(a \cdot \text{age} + 0.3)$ with age recorded in years, $\sqrt{\text{CD4}\% + 10}$ for death endpoint, $\sqrt{\text{CD4}\% + 4}$ for AIDS endpoint. The inclusion of the $b_2$ parameter did not significantly improve the fit of any model, nor did the $k_2$ parameter in models involving viral load, which were therefore set to zero. The maximum likelihood estimates are shown in the following table.

<table>
<thead>
<tr>
<th>Transformed variable</th>
<th>Endpoint</th>
<th>Parameter estimate</th>
<th>a_1</th>
<th>a_2</th>
<th>b_1</th>
<th>k_1</th>
<th>k_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{\text{CD4}% + 4}$</td>
<td>AIDS</td>
<td>-2.3608</td>
<td>-0.9428</td>
<td>2.3746</td>
<td>-0.1915</td>
<td>0.2074</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{\text{CD4}% + 10}$</td>
<td>Death</td>
<td>-3.5380</td>
<td>-1.2683</td>
<td>4.7643</td>
<td>0.3203</td>
<td>0.1420</td>
<td></td>
</tr>
<tr>
<td>7-$\log_{10}$(viral load)</td>
<td>AIDS</td>
<td>-2.4231</td>
<td>-0.8246</td>
<td>-0.3937</td>
<td>0.3487</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>7-$\log_{10}$(viral load)</td>
<td>Death</td>
<td>-4.0474</td>
<td>-1.1982</td>
<td>-1.0972</td>
<td>0.3637</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

**Example:** Estimated 12-month probability of AIDS for a 2.0 year old child with 40% CD4 cells.

1. $\log_e(a) = -2.3608 + (-0.9428 \times \log_e(2.0 + 0.3)) = -3.1461$
2. $a = \exp(-3.1461) = 0.04302$
3. $b = \exp(2.3746) = 10.7467$
4. $\log_e(k) = -0.1915 + (0.2074 \times \log_e(2.0 + 0.3)) = -0.01875$
5. $k = \exp(-0.01875) = 0.9814$
6. $\lambda = 0.04302 + 10.7467 \times \exp(-0.9814 \times \sqrt{40+4}) = 0.05902$
7. 12-month probability of AIDS = $1 - \exp(-0.05902) = 0.05731$ or 5.7%
References


http://www.hivatis.org/guidelines/Pediatric/Dec12_01/peddec.pdf


35. Centers for Disease Control and Prevention. 1994 revised classification system for human immunodeficiency virus infection in children less than 13 years of age. MMWR 1994, 43 (No. RR-12)


40. Centers for Disease Control and Prevention. 1995 revised guidelines for prophylaxis against Pneumocystis carinii pneumonia for children infected with or perinatally exposed to human immunodeficiency virus. MMWR 1995. 44 (No. RR-4)


Table 1. Summary of participating studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Reference</th>
<th>Calendar period</th>
<th>No. children in CD4 percent analysis</th>
<th>No. children in viral load analysis</th>
<th>Interval between first and last measurement (median [months])</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Prospective birth cohorts</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediatric Pulmonary and Cardiovascular Complications of HIV Infection Study, Group 2A¹</td>
<td>20</td>
<td>1990-1995</td>
<td>265</td>
<td>185</td>
<td>17.5</td>
</tr>
<tr>
<td>Women and Infants Transmission Study</td>
<td>13</td>
<td>1990-2001</td>
<td>142</td>
<td>116</td>
<td>12.1</td>
</tr>
<tr>
<td>European Collaborative Study²</td>
<td>21</td>
<td>1985-2000</td>
<td>99</td>
<td>41</td>
<td>47.0</td>
</tr>
<tr>
<td>PACTG 076 (infected children)</td>
<td>22</td>
<td>1991-1995</td>
<td>47</td>
<td>41</td>
<td>15.6</td>
</tr>
<tr>
<td><strong>General cohorts</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italian Register for HIV Infection in Children³</td>
<td>1</td>
<td>1983-2000</td>
<td>927</td>
<td>164</td>
<td>35.0</td>
</tr>
<tr>
<td>Collaborative HIV Paediatric Study (CHIPS) of UK &amp; Ireland³</td>
<td>6,23</td>
<td>1986-2002</td>
<td>486</td>
<td>393</td>
<td>16.2</td>
</tr>
<tr>
<td>Swiss Mother and Child HIV Cohort Study³</td>
<td>24,25</td>
<td>1985-2001</td>
<td>100</td>
<td>60</td>
<td>18.4</td>
</tr>
<tr>
<td><strong>Randomised trials (interventions)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICHD IVIG Clinical Trial (IVIG vs albumin placebo)</td>
<td>26</td>
<td>1988-1991</td>
<td>335</td>
<td>225</td>
<td>18.4</td>
</tr>
<tr>
<td>PACTG 128 (high vs low dose of ZDV)</td>
<td>27</td>
<td>1989-1994</td>
<td>339</td>
<td>0</td>
<td>37.1</td>
</tr>
<tr>
<td>PACTG 152 (ZDV vs ddl vs ZDV+ddl)⁴</td>
<td>28</td>
<td>1991-1995</td>
<td>232</td>
<td>160</td>
<td>24.6</td>
</tr>
<tr>
<td>Study Description</td>
<td>Participants</td>
<td>Follow-up</td>
<td>Events</td>
<td>Excluded</td>
<td>Proportion Followed</td>
</tr>
<tr>
<td>--------------------------------------------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>--------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>PACTG 051 (IVIG vs placebo)</td>
<td>29</td>
<td>1988-1994</td>
<td>252</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PACTG 240 (ZDV vs d4T)</td>
<td>30</td>
<td>1994-1996</td>
<td>94</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>PACTG 190 (ZDV vs ZDV+ddC)</td>
<td>31</td>
<td>1992-1994</td>
<td>90</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PENTA 1 (immediate vs deferred ZDV)</td>
<td>32</td>
<td>1992-2000</td>
<td>164</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>PENTA 3 (ddC+ZDV vs ZDV)</td>
<td>33</td>
<td>1994-1996</td>
<td>11</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>PENTA 4 (adding 3TC or placebo to current therapy)</td>
<td>34</td>
<td>1995-1998</td>
<td>16</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>3941</strong></td>
<td><strong>1798</strong></td>
<td><strong>23.5</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Includes 175 children enrolled retrospectively
2. European Collaborative Study omitted children reported from its Italian and PENTA centres because of overlap
3. Proportion followed from birth in general cohorts: 39% Italian, 12% CHIPS, 36% Swiss
4. Children randomised to an antiretroviral drug other than zidovudine are excluded

IVIG = intravenous immunoglobulin, ZDV = zidovudine, ddl = didanosine, d4T = stavudine, ddC = zalcitane, 3TC = lamivudine
Children who appear in more than one study have been allocated to the study which provided the earliest information
Table 2. Follow-up and number of events

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>AIDS (or death)</th>
<th></th>
<th>Death</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD4 percent</td>
<td>Viral load</td>
<td>CD4 percent</td>
<td>Viral load</td>
</tr>
<tr>
<td>No. children</td>
<td>3371</td>
<td>1527</td>
<td>3908</td>
<td>1789</td>
</tr>
<tr>
<td>Total no. events</td>
<td>997</td>
<td>284</td>
<td>568</td>
<td>129</td>
</tr>
<tr>
<td>Total follow-up (years)</td>
<td>7297</td>
<td>2282</td>
<td>9087</td>
<td>2816</td>
</tr>
<tr>
<td>Follow-up during ziduvudine monotherapy</td>
<td>3238 (44%)</td>
<td>771 (34%)</td>
<td>4312 (47%)</td>
<td>1040 (37%)</td>
</tr>
<tr>
<td>Follow-up during:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983-1991</td>
<td>2035 (28%)</td>
<td>314 (14%)</td>
<td>2745 (30%)</td>
<td>424 (15%)</td>
</tr>
<tr>
<td>1992-1995</td>
<td>3586 (49%)</td>
<td>1011 (44%)</td>
<td>4426 (49%)</td>
<td>1275 (45%)</td>
</tr>
<tr>
<td>1996-2002</td>
<td>1676 (23%)</td>
<td>957 (42%)</td>
<td>1917 (21%)</td>
<td>1117 (40%)</td>
</tr>
</tbody>
</table>
Table 3. Estimated risk of AIDS and death within 12 months at selected values of age and CD4 percent or viral load. 95% confidence interval shown in parenthesis.

<table>
<thead>
<tr>
<th>Age years</th>
<th>Endpoint</th>
<th>CD4 percent</th>
<th>Viral load (copies/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>0.5</td>
<td>AIDS</td>
<td>49 (43-55)</td>
<td>29 (26-32)</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>29 (24-33)</td>
<td>11.0 (9.3-13.1)</td>
</tr>
<tr>
<td>1</td>
<td>AIDS</td>
<td>38 (34-43)</td>
<td>20 (18-22)</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>19 (17-22)</td>
<td>6.5 (5.6-7.6)</td>
</tr>
<tr>
<td>2</td>
<td>AIDS</td>
<td>27 (26-30)</td>
<td>12 (11-14)</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>12 (10-13)</td>
<td>3.4 (2.9-3.9)</td>
</tr>
<tr>
<td>5</td>
<td>AIDS</td>
<td>14 (13-16)</td>
<td>5.3 (4.6-6.2)</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>5.0 (4.1-5.8)</td>
<td>1.2 (0.9-1.4)</td>
</tr>
<tr>
<td>10</td>
<td>AIDS</td>
<td>7.9 (6.1-9.8)</td>
<td>2.5 (2.0-3.1)</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>2.3 (1.7-3.0)</td>
<td>0.5 (0.3-0.6)</td>
</tr>
</tbody>
</table>
Table 4. Results of Cox proportional hazards models

<table>
<thead>
<tr>
<th>Factor</th>
<th>AIDS</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjusted hazard ratio (95% CI)¹</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td></td>
<td>1.00 (0.78-1.12)</td>
</tr>
<tr>
<td>Italian Register</td>
<td>0.93 (0.72-1.27)</td>
<td>2.41 (1.27-4.59)</td>
</tr>
<tr>
<td>CHIPS UK &amp; Ireland</td>
<td>1.14 (0.72-1.80)</td>
<td>0.75 (0.36-1.55)</td>
</tr>
<tr>
<td>Swiss</td>
<td>2.10 (0.47-3.01)</td>
<td>1.33 (0.86-2.06)</td>
</tr>
<tr>
<td>IVIG – placebo arm</td>
<td>1.61 (1.07-2.43)</td>
<td>1.81 (1.13-2.91)</td>
</tr>
<tr>
<td>– intervention arm</td>
<td>1.20 (0.98-1.47)</td>
<td>0.81 (0.61-1.07)</td>
</tr>
<tr>
<td>PACTG trials combined</td>
<td>0.64 (0.43-0.96)</td>
<td>0.39 (0.19-0.80)</td>
</tr>
<tr>
<td>PENTA trials combined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calendar year²</td>
<td>1.00 (0.76-1.04)</td>
<td>0.78 (0.64-0.97)</td>
</tr>
<tr>
<td>1983-1991*</td>
<td>0.54 (0.41-0.70)</td>
<td>0.39 (0.24-0.62)</td>
</tr>
<tr>
<td>1992-1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Female*</td>
<td>0.98 (0.87-1.12)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td>White*</td>
<td>0.92 (0.73-1.13)</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>0.92 (0.71-1.20)</td>
</tr>
<tr>
<td></td>
<td>Hispanic</td>
<td>0.83 (0.55-1.25)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

* reference category
1. Effects adjusted for all other factors plus most recent CD4 measurement, modelled as a restricted cubic spline with age interaction
2. Fitted as time varying covariates
Legends to Figures

Figure 1
Distribution of follow-up within age groups: (A) CD4%, death (B) CD4%, AIDS (C) Viral load, death (D) Viral load, AIDS. Follow-up was accumulated between successive measurements up to a maximum of 12 months. Number of events shown below each graph.

Figure 2
Estimated probability of an event within 12 months at selected ages: (A) death related to CD4%, (B) AIDS related to CD4% (C) death related to viral load (D) AIDS related to viral load. Note the different scale on the vertical axes.
(C) Viral load and death

![Bar chart showing viral load and death by age group.]

- Age (years): < 1, 1-, 2-, 4-, 6-, 8-, 10-
- Person years of risk:
  - <4 log: 2, 1, 2, 0, 0, 0, 1
  - 4 log: 7, 1, 9, 1, 4, 1, 1
  - 5 log: 21, 9, 7, 4, 1, 2, 1
  - 6 log: 22, 17, 12, 1, 0, 2, 0

(D) Viral load and AIDS

![Bar chart showing viral load and AIDS by age group.]

- Age (years): < 1, 1-, 2-, 4-, 6-, 8-, 10-
- Person years of risk:
  - <4 log: 14, 5, 6, 4, 1, 1, 2
  - 4 log: 16, 8, 8, 13, 4, 2, 2
  - 5 log: 42, 23, 24, 9, 7, 3, 3
  - 6 log: 53, 15, 14, 1, 1, 2, 0